

(c) State and prove Interior Dirichlet Problem for a Circle.

OR

(d) Obtain the solution of Diffusion equation in spherical coordinates. (15) 4. (a) Solve the wave equation given by $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$, $-\infty < x < +$, subject to the initial conditions

$$u(x,0) = f(x), - \langle x \langle , \frac{\partial u}{\partial t}(x,0) = 0.$$
(5)

OR

(b) Show that the Green's function $G(\bar{r}, \bar{r'})$ has the symmetry property. (5)

(c) Obtain the solution of the interior Dirichlet problem for a sphere using the Green's function. (15)

OR

(d) State and prove Helmholtz Theorem.

5. (a) Find the iterated Kernel for the Kernel $K(x, t) = e^x cosx; a = 0, b = \pi.$ (5)

OR

(b) Using Fredholm determinants, find the resolvent kernel when $K(x, t) = e^{t+x}$, a = 0, b = 1. (5)

(c) Solve the symmetric integral equation $y(x) = (x + 1)^2 + \int_{-1}^{1} (xt + x^2t^2)y(t)dt.$ (15)

OR

(d) State and prove Hilbert- Schmidt theorem. (15)

(15)